Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 172: 113157, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689846

RESUMO

As a weakly gelling protein, hot spring egg white underwent thinning during storage. This study explored the mechanism of thinning in hot spring egg white from the perspective of "gel structure and protein composition" using quantitative proteomics, SEM, SDS-PAGE, and other techniques. Quantitative proteomics analysis showed that there were 81 (44 up-regulated and 21 down-regulated) key proteins related to thinning of hot spring egg white. The changes in the relative abundance of proteins such as ovalbumin-related Y, mucin-6, lysozyme, ovomucoid, and ovotransferrin might be important reasons for thinning in hot spring egg white. SEM results indicated that the gel network gradually became regular and uniform, with large pores appearing on the cross-section and being pierced. Along with the decrease in intermolecular electrostatic repulsion, protein molecules gradually aggregated. The particle size gradually increased from 139.1 nm to 422.5 nm. Meanwhile, the surface hydrophobicity, and disulfide bond content gradually increased. These changes might be the reasons for thinning in hot spring egg white during storage. It can provide a new perspective for studying the thinning mechanism of weakly gelling egg whites.


Assuntos
Clara de Ovo , Fontes Termais , Proteoma , Ovos , Ovomucina , Géis
2.
J Sci Food Agric ; 103(15): 7517-7528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37440710

RESUMO

BACKGROUND: Lipid droplets (LDs) are important multifunctional organelles responsible for lipid metabolism of postmortem muscle. However, the dynamics in their building blocks (cores and layers) and phosphorylation of lipid droplet-related proteins (LDRPs) regulating meat lipolysis remain unknown at salt-stimulated conditions. RESULTS: LDRPs extracted from cured porcine biceps femoris (1% and 3% salt) were subjected to label-free quantitative phosphoproteomic analysis and LDs morphological validation. Results indicated that 3% salt curing significantly decreased triglyceride (TG) content with increase in glycerol and decrease in LDs fluorescence compared to 1% salt curing. Comparative phosphoproteomics showed that there were significant changes in phosphorylation at 386 sites on 174 LDRPs between assayed groups (P < 0.05). These differential proteins were mainly involved in lipid and carbohydrate metabolism. Curing of 3% salt induced more site-specific phosphorylation of perilipin 1 (PLIN1, at Ser81) and adipose triglyceride lipase (ATGL, at Ser399) than 1%, whereas the phosphorylation (at Ser600) of hormone-sensitive lipase (HSL) was up-regulated. Ultrastructure imaging showed that LDs were mostly associated with mitochondria, and the average diameter of LDs decreased from 2.34 µm (1% salt) to 1.73 µm (3% salt). CONCLUSION: Phosphoproteomics unraveled salt-stimulated LDRPs phosphorylation of cured porcine meat provoked intensified lipolysis. Curing of 3% salt allowed an enhanced lipolysis than 1% by up-regulating the phosphorylation sites of LDRPs and recruited lipases. The visible splitting of LDs, together with sarcoplasmic disorganization, supported the lipolysis robustness following 3% salt curing. The finding provides optimization ideas for high-quality production of cured meat products. © 2023 Society of Chemical Industry.


Assuntos
Músculos Isquiossurais , Metabolismo dos Lipídeos , Animais , Suínos , Gotículas Lipídicas/metabolismo , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Lipólise , Cloreto de Sódio/metabolismo , Biologia Computacional
3.
Environ Sci Pollut Res Int ; 30(11): 28690-28703, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36401007

RESUMO

Traditional stereomicroscopy (SM) is limited for the identification of microplastics of less than 500 µm in wastewater treatment plants (WWTPs). Accordingly, novel methods for the accurate quantification of these microplastics are needed. In this study, we investigated the polymer type, morphology, size distribution, and abundance of microplastics in each unit of three selected WWTPs by SM and a fluorescence-based protocol (FR) combined with FTIR. Using the FR method, most microplastics detected in the three WWTPs were 50-200 µm in size. Polyethylene, polypropylene, and polyamide were the main polymer types, and the distributions of fibers, films, and debris were determined. Despite highly similar microplastic removal rates (78.6‒95.2% (SM) and 77.4‒94.2% (FR)) in the WWTPs by the two methods, the microplastic abundances obtained by FR (405‒6987 items/L) were approximately 2 orders of magnitude higher than the corresponding results by SM (1‒21 items/L). In addition, a considerable number of small-sized microplastics (< 500 µm) were detected in the effluents (405‒947 items/L) using FR. These results clearly reveal that microplastics in WWTPs have been seriously underestimated in most previous studies based on SM. Further research should focus on the environmental risks of small-sized microplastics from WWTPs.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos , Águas Residuárias , Eliminação de Resíduos Líquidos , Fluorescência , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Polietileno
4.
Food Res Int ; 157: 111449, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761689

RESUMO

Myosin filament plays a critical role in water-trapping and thermodynamic regulation during processing of brined muscle foods. The redox state and availability of proteolytic/antioxidant enzymes affected by salt may change the ion-binding capacity of myosin consequently contributing to swelling and rehydration. Thus, this study investigated the impact of different salt content (0%, 1%, 2%, 3%, 4%, 5% NaCl) and oxidation in vitro (10 mM H2O2/ascorbate-based hydroxyl radical (OH)-generating system) on the oxidative stability, solubility/dispersion capacity, chymotrypsin digestibility, aggregation site and the microrheological properties of isolated porcine myosin. The result showed that, brining at 2% salt exposed more sulfhydryl groups and inhibited the formation of disulfide bond, whereby smaller dispersed structure (diameter within 10-50 nm) and higher Ca2+-ATPase activity of the denatured myosin were observed. Accordingly, gel electrophoresis showed that myosin S1 and HMM subunits were highly oxidized and susceptible to reversible assembles. Despite enhanced hydrophobic interactions between swelled myosin at 3% salt content, ≥4% salt greatly promoted the exposure/polarization of tryptophan and cross-linking structures, mainly occurring at myosin S2 portion. The results of micro-rheology proved that oxidized myosin formed a tighter heat-set network following rehydration at high ion strength (≥4% salt), suggesting an increased inter-droplet resistance and macroscopic viscosity. This work is expected to give some useful insights into improved texture and functionality of engineered muscle foods.


Assuntos
Peróxido de Hidrogênio , Cloreto de Sódio , Animais , Miosinas/química , Oxirredução , Isoformas de Proteínas , Suínos
5.
Front Nutr ; 9: 925846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719162

RESUMO

Over the latest decade, lipidomics has been extensively developed to give robust strength to the qualitative and quantitative information of lipid molecules derived from physiological animal tissues and edible muscle foods. The main lipidomics analytical platforms include mass spectrometry (MS) and nuclear magnetic resonance (NMR), where MS-based approaches [e.g., "shotgun lipidomics," ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS)] have been widely used due to their good sensitivity, high availability, and accuracy in identification/quantification of basal lipid profiles in complex biological point of view. However, each method has limitations for lipid-species [e.g., fatty acids, triglycerides (TGs), and phospholipids (PLs)] analysis, and necessitating the extension of effective chemometric-resolved modeling and novel bioinformatic strategies toward molecular insights into alterations in the metabolic pathway. This review summarized the latest research advances regarding the application of advanced lipidomics in muscle origin and meat processing. We concisely highlighted and presented how the biosynthesis and decomposition of muscle-derived lipid molecules can be tailored by intrinsic characteristics during meat production (i.e., muscle type, breed, feeding, and freshness). Meanwhile, the consequences of some crucial hurdle techniques from both thermal/non-thermal perspectives were also discussed, as well as the role of salting/fermentation behaviors in postmortem lipid biotransformation. Finally, we proposed the inter-relationship between potential/putative lipid biomarkers in representative physiological muscles and processed meats, their metabolism accessibility, general nutritional uptake, and potency on human health.

6.
Food Chem ; 373(Pt B): 131597, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34815115

RESUMO

Towards a better understanding of the formation mechanism of salt on intramuscular triglyceride (TG) hydrolysis occurring in biceps femoris (BF) muscles during dry-salting process, the changes of TG hydrolysis, TG hydrolysis activity and phosphorylation of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) as well as their regulatory proteins (Perilipin1, ABHD5, G0S2) with different salt content (0%, 1%, 3%, 5%) and salting time (the first and third day) were analyzed. The results showed that dry-salting significantly increased the TG hydrolase activity and hydrolysis extent with salting process proceed (P < 0.05), especially upon the treatment with 3% amount of salt. The SDS-PAGE and Western-blot results further demonstrated that the promotion of salt on TG hydrolysis in intramuscular adipocytes was mainly attributed to the activation of protein kinase activity and protein phosphorylation process. Accordingly, the ATGL and HSL were activated, and meanwhile, the TG hydrolysis pivotal switch perilipin1 was also turned on by phosphorylation modification.


Assuntos
Músculos Isquiossurais , Esterol Esterase , Animais , Músculos Isquiossurais/metabolismo , Hidrólise , Lipase/genética , Lipase/metabolismo , Lipídeos , Lipólise , Fosforilação , Esterol Esterase/genética , Esterol Esterase/metabolismo , Suínos , Triglicerídeos
7.
Food Chem ; 370: 131074, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34537423

RESUMO

Salting and rehydration of myofibrils can be interfered with free radical diffusion process. This study investigated the effects of salt content (0, 1, 3 and 5%) and H2O2/ascorbate-based hydroxyl radical (OH)-generating system (1, 10, 20 mM H2O2) on the oxidation, conformation, aggregation, and thermal stability of porcine myofibrillar proteins (MPs). Results showed that 5% of salt inhibited carbonylation of MPs with intensive sulfhydryl loss and tryptophan quenching. Fourier transform infrared (FTIR), laser light scattering, and scanning electron microscopy (SEM) suggested that 20 mM H2O2 transformed more α-helix into ß-sheet of MPs, favoring larger aggregates being selectively exposed towards solvent during salt-induced fiber swelling. Oxidized MPs brined with ≤1% salt underwent partial unfolding with higher flexibility, while up to 5% of salt greatly hampered their hydration potential and weakened inter-fibrillar hydrogen bond with an improved protein solubility. Micro-rheology revealed that 1% of salt and 10 mM H2O2 rendered a denser structure of heat-set MPs gels.


Assuntos
Peróxido de Hidrogênio , Miofibrilas , Animais , Géis , Oxirredução , Estresse Oxidativo , Reologia , Suínos
8.
Addict Biol ; 24(5): 849-859, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29920857

RESUMO

Restricting when and where smoking can occur is a major focus of public health policies in Western countries. In conjunction with increased taxation, these approaches have contributed to a reduction in smoking uptake among adolescents, yet the consequences for established smokers are less clear. In order to further explore this relationship, we developed a novel animal model of restricted nicotine self-administration. Rats were trained to choose between three doses of nicotine (15, 30 and 60 µg/kg/infusion) under conditions where nicotine was (1) freely available at a low cost (20-second post-infusion time-out, fixed-ratio 1 [FR1]), (2) available under restricted access at a low cost (300-second post-infusion time-out, FR1), or (3) freely available at a high cost (20-second post-infusion time-out, FR5). We demonstrate that as access to nicotine is restricted or when cost increases, rats compensate for these changes by increasing their intake of the highest dose of nicotine available. This preference was impervious to treatment with the smoking cessation medication varenicline, but was reduced when the cost of the highest dose only was increased, or when nicotine was again made freely available at a low cost. These results provide the first evidence in rats that nicotine availability and cost influence nicotine choice independently of variations in nicotine and context exposure. They imply that established smokers may compensate for changes in the availability and cost of tobacco by increasing their rate of smoking when they are free to do so.


Assuntos
Comportamento Animal/fisiologia , Comportamento de Escolha/fisiologia , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Autoadministração , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Infusões Intravenosas , Política Pública , Ratos , Política Antifumo , Agentes de Cessação do Hábito de Fumar/farmacologia , Produtos do Tabaco , Vareniclina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...